Degradation of Polymeric Biomaterials
نویسندگان
چکیده
Environmental and processing factors affecting the biostability of medical devices made from traditionally "stable" polymers, such as isotactic polypropylene (PP) and ultrahigh molecular weight polyethylene (UHMW-PE) , were analyzed and their undesirable degradation was related to performance of typical medical devices. Among the critical phenomena determining the biological performance of UHMW-PE and PP devices are oxidation during melt-processing and the propensity of the polymer chains to radiolyse and radio-oxidize. Polyesters and their biomedical devices , which can be designed to degrade predictably, are addressed with some focus on the less obvious determinants of performance.
منابع مشابه
Current Insights into the Modulation of Oral Bacterial Degradation of Dental Polymeric Restorative Materials
Dental polymeric composites have become the first choice for cavity restorations due to their esthetics and capacity to be bonded to the tooth. However, the oral cavity is considered to be harsh environment for a polymeric material. Oral biofilms can degrade the polymeric components, thus compromising the marginal integrity and leading to the recurrence of caries. Recurrent caries around restor...
متن کاملIn-silico prediction of Cellular Responses to Polymeric Biomaterials from Their Molecular Descriptors
In this work quantitative structure activity relationship (QSAR) methodology was applied for modeling and prediction of cellular response to polymers that have been designed for tissue engineering. After calculation and screening of molecular descriptors, linear and nonlinear models were developed by using multiple linear regressions (MLR) and artificial neural network (ANN) methods. The root m...
متن کاملCharacterization of knitted polymeric scaffolds for potential use in ligament tissue engineering.
Different scaffolds have been designed for ligament tissue engineering. Knitted scaffolds of poly-L-lactic acid (PLLA) yarns and co-polymeric yarns of PLLA and poly(glycolic acid) (PLGA) were characterized in the current study. The knitted scaffolds were immersed in medium for 20 weeks, before mass loss, molecular weight, pH value change in medium were tested; changes in mechanical properties w...
متن کاملBiodegradable polymers as biomaterials
During the past two decades significant advances have been made in the development of biodegradable polymeric materials for biomedical applications. Degradable polymeric biomaterials are preferred candidates for developing therapeutic devices such as temporary prostheses, three-dimensional porous structures as scaffolds for tissue engineering and as controlled/sustained release drug delivery ve...
متن کاملA biodegradable polymer-based coating to control the performance of magnesium alloy orthopaedic implants.
Magnesium and its alloys may potentially be applied as degradable metallic materials in orthopaedic implantations due to their degradability and resemblance to human cortical bone. However, the high corrosion rate and accumulation of hydrogen gas upon degradation hinders its clinical application. In this study, we adopt a new approach to control the corrosion rate by coating a controllable poly...
متن کاملSynthesis and degradation characteristics of salicylic acid-derived poly(anhydride-esters).
A biodegradable poly(anhydride-ester) was synthesized by melt condensation polymerization of the acetylated monomer to yield a novel polymeric prodrug. The polymer we have synthesized is composed of alkyl chains linked by ester bonds to aromatic moieties, specifically salicylic acid--the active component of aspirin. With the medicinal properties attributed to salicylic acid and the ease of meta...
متن کامل